Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Sci Food Agric ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661233

ABSTRACT

BACKGROUND: Wheat distillers' grains (WDG) and seaweeds are recommended as alternative protein sources and enteric methane mitigators in dairy cow diets, respectively, but little is known about their impact on milk quality and safety. In the present study, 16 cows in four 4 × 4 latin squares were fed iso-nitrogenous diets (50:50 forage: concentrate ratio), with rapeseed meal (RSM)-based or WDG-based concentrate (230 and 205 g kg-1 DM) and supplemented with or without Saccharina latissima. RESULTS: Replacement of RSM with WDG enhanced milk nutritional profile by decreasing milk atherogenicity (P = 0.002) and thrombogenicity (P = 0.019) indices and the concentrations of the nutritionally undesirable saturated fatty acids, specifically lauric (P = 0.045), myristic (P = 0.022) and palmitic (P = 0.007) acids. It also increased milk concentrations of the nutritionally beneficial vaccenic (P < 0.001), oleic (P = 0.030), linoleic (P < 0.001), rumenic (P < 0.001), α-linolenic (P = 0.012) acids and total monounsaturated (P = 0.044), polyunsaturated (P < 0.001), and n-6 (P < 0.001) fatty acids. Feeding Saccharina latissima at 35.7 g/cow/d did not affect the nutritionally relevant milk fatty acids or pose any risk on milk safety, as bromoform concentrations in milk were negligible and unaffected by the dietary treatments. It however slightly reduced milk concentrations of pantothenate. CONCLUSION: Feeding WDG to dairy cows improved the milk FA profiles, by increasing the concentrations of the nutritionally beneficial fatty acids and reducing the concentration of the nutritionally undesirable saturated fatty acids; while feeding seaweed slightly reduced pantothenate concentrations. However, when considering the current average milk intakes in the population, the milk compositional differences between treatments in this study appear relatively small to affect human health. This article is protected by copyright. All rights reserved.

2.
Eur J Nutr ; 63(2): 539-548, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38093120

ABSTRACT

PURPOSE: Longer-term intake of fatty acid (FA)-modified dairy products (SFA-reduced, MUFA-enriched) was reported to attenuate postprandial endothelial function in humans, relative to conventional (control) dairy. Thus, we performed an in vitro study in human aortic endothelial cells (HAEC) to investigate mechanisms underlying the effects observed in vivo. METHODS: This sub-study was conducted within the framework of the RESET study, a 12-week randomised controlled crossover trial with FA-modified and control dairy diets. HAEC were incubated for 24 h with post-intervention plasma samples from eleven adults (age: 57.5 ± 6.0 years; BMI: 25.7 ± 2.7 kg/m2) at moderate cardiovascular disease risk following representative sequential mixed meals. Markers of endothelial function and lipid regulation were assessed. RESULTS: Relative to control, HAEC incubation with plasma following the FA-modified treatment increased postprandial NOx production (P-interaction = 0.019), yet up-regulated relative E-selectin mRNA gene expression (P-interaction = 0.011). There was no impact on other genes measured. CONCLUSION: Incubation of HAEC with human plasma collected after longer-term dairy fat manipulation had a beneficial impact on postprandial NOx production. Further ex vivo research is needed to understand the impact of partial replacement of SFA with unsaturated fatty acids in dairy foods on pathways involved in endothelial function.


Subject(s)
Endothelial Cells , Fatty Acids , Adult , Humans , Middle Aged , Endothelial Cells/metabolism , Fatty Acids/pharmacology , Fatty Acids, Unsaturated , Diet , Dairy Products , Postprandial Period , Dietary Fats/metabolism , Cross-Over Studies
3.
Food Chem ; 403: 134315, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36183466

ABSTRACT

Sixteen multiparous Holstein cows in four blocks of 4 × 4 Latin square over 4-week experimental periods were used to study the effects of seaweed (Saccharina latissima) supplement (with/without) and protein source (rapeseed meal (RSM)/wheat distiller's grain (WDG)) on milk mineral concentrations. Dietary treatments did not affect milk production and basic composition. Feeding seaweed slightly decreased milk Ca and Cu concentrations; whilst increased (by 3.3-fold) milk iodine (I) concentration, due to a higher dietary I supply. Substitution of WDG with RSM increased feed-to-milk transfer of Ca, Na, and Se and decreased that of Mg, P, Fe, and Mn; but only reduced milk Mn and I concentrations (the latter by 27 % as a potential result of increased glucosinolate intake). Seaweed supplement can improve milk I content when cows' I supply/availability is limited, but care should be taken to avoid excess milk I contents that may pose nutritional risks for young children.


Subject(s)
Brassica napus , Brassica rapa , Phaeophyceae , Seaweed , Female , Cattle , Animals , Milk/metabolism , Lactation , Animal Feed/analysis , Diet/veterinary , Dietary Supplements , Edible Grain , Vegetables , Minerals/metabolism
4.
Front Microbiol ; 13: 889618, 2022.
Article in English | MEDLINE | ID: mdl-35836418

ABSTRACT

This study aimed to investigate the effects of two brown Icelandic seaweed samples (Ascophyllum nodosum and Fucus vesiculosus) on in vitro methane production, nutrient degradation, and microbiota composition. A total mixed ration (TMR) was incubated alone as control or together with each seaweed at two inclusion levels (2.5 and 5.0% on a dry matter basis) in a long-term rumen simulation technique (Rusitec) experiment. The incubation period lasted 14 days, with 7 days of adaptation and sampling. The methane concentration of total gas produced was decreased at the 5% inclusion level of A. nodosum and F. vesiculosus by 8.9 and 3.6%, respectively (P < 0.001). The total gas production was reduced by all seaweeds, with a greater reduction for the 5% seaweed inclusion level (P < 0.001). Feed nutrient degradation and the production of volatile fatty acids and ammonia in the effluent were also reduced, mostly with a bigger effect for the 5% inclusion level of both seaweeds, indicating a reduced overall fermentation (all P ≤ 0.001). Microbiota composition was analyzed by sequencing 16S rRNA amplicons from the rumen content of the donor cows, fermenter liquid and effluent at days 7 and 13, and feed residues at day 13. Relative abundances of the most abundant methanogens varied between the rumen fluid used for the start of incubation and the samples taken at day 7, as well as between days 7 and 13 in both fermenter liquid and effluent (P < 0.05). According to the differential abundance analysis with q2-ALDEx2, in effluent and fermenter liquid samples, archaeal and bacterial amplicon sequence variants were separated into two groups (P < 0.05). One was more abundant in samples taken from the treatment without seaweed supplementation, while the other one prevailed in seaweed supplemented treatments. This group also showed a dose-dependent response to seaweed inclusion, with a greater number of differentially abundant members between a 5% inclusion level and unsupplemented samples than between a 2.5% inclusion level and TMR. Although supplementation of both seaweeds at a 5% inclusion level decreased methane concentration in the total gas due to the high iodine content in the seaweeds tested, the application of practical feeding should be done with caution.

5.
Philos Trans R Soc Lond B Biol Sci ; 377(1851): 20210153, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35369755

ABSTRACT

Both inter- and intragroup interactions can be important influences on behaviour, yet to date most research focuses on intragroup interactions. Here, we describe a hitherto relatively unknown behaviour that results from intergroup interaction in the cooperative breeding pied babbler: kidnapping. Kidnapping can result in the permanent removal of young from their natal group. Since raising young requires energetic investment and abductees are usually unrelated to their kidnappers, there appears no apparent evolutionary advantage to kidnapping. However, kidnapping may be beneficial in species where group size is a critically limiting factor (e.g. for reproductive success or territory defence). We found kidnapping was a highly predictable event in pied babblers: primarily groups that fail to raise their own young kidnap the young of others, and we show this to be the theoretical expectation in a model that predicts kidnapping to be facultative, only occurring in those cases where an additional group member has sufficient positive impact on group survival to compensate for the increase in reproductive competition. In babblers, groups that failed to raise young were also more likely to accept extragroup adults (hereafter rovers). Groups that fail to breed may either (i) kidnap intergroup young or (ii) accept rovers as an alternative strategy to maintain or increase group size. This article is part of the theme issue 'Intergroup conflict across taxa'.


Subject(s)
Passeriformes , Animals , Biological Evolution , Crime , Reproduction
6.
Am J Clin Nutr ; 115(3): 679-693, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35020795

ABSTRACT

BACKGROUND: Longer-term consumption of SFA-reduced, MUFA-enriched dairy products has been reported to improve fasting flow-mediated dilatation (FMD). Yet, their impact on endothelial function in the postprandial state warrants investigation. OBJECTIVES: The aim was to compare the impact of a fatty acid (FA) modified with a conventional (control) dairy diet on the postprandial %FMD (primary outcome) and systemic cardiometabolic responses to representative meals, and retrospectively explore whether treatment effects differ by apolipoprotein E (APOE) or endothelial NO synthase (eNOS) Glu298Asp gene polymorphisms. METHODS: In a crossover-design randomized controlled study, 52 adults with moderate cardiovascular disease risk consumed dairy products [38% of total energy intake (%TE) from fat: FA-modified (target: 16%TE SFAs; 14%TE MUFAs) or control (19%TE SFAs; 11%TE MUFAs)] for 12 wk, separated by an 8-wk washout. Blood sampling and FMD measurements (0-480 min) were performed pre- and postintervention after sequential mixed meals that were representative of the assigned dairy diets (0 min, ∼50 g fat; 330 min, ∼30 g fat). RESULTS: Relative to preintervention (∆), the FA-modified dairy diet and meals (treatment) attenuated the increase in the incremental AUC (iAUC), but not AUC, for the %FMD response observed with the conventional treatment (-135 ± 69% vs. +199 ± 82% × min; P = 0.005). The ∆ iAUC, but not AUC, for the apoB response decreased after the FA-modified treatment yet increased after the conventional treatment (-4 ± 3 vs. +3 ± 3 mg/mL × min; P = 0.004). The ∆ iAUC decreased for plasma total SFAs (P = 0.003) and trans 18:1 (P < 0.0001) and increased for cis-MUFAs (P < 0.0001) following the conventional relative to the FA-modified treatment. No treatment × APOE or eNOS genotype interactions were evident for any outcome. CONCLUSIONS: This study provides novel insights into the longer-term effects of FA-modified dairy food consumption on postprandial cardiometabolic responses.


Subject(s)
Cardiovascular Diseases , Dietary Fats , Adult , Apolipoproteins E , Biomarkers , Cardiovascular Diseases/prevention & control , Dietary Fats/pharmacology , Dilatation , Fatty Acids , Fatty Acids, Monounsaturated , Humans , Retrospective Studies
7.
Ecol Evol ; 11(23): 17031-17042, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34938490

ABSTRACT

Many species maintain territories, but the degree of overlap between territories and the level of aggression displayed in territorial conflicts can vary widely, even within species. Greater territorial overlap may occur when neighboring territory holders are close relatives. Animals may also differentiate neighbors from strangers, with more familiar neighbors eliciting less-aggressive responses during territorial conflicts (the "dear enemy" effect). However, research is lacking in how both kinship and overlap affect territorial conflicts, especially in group-living species. Here, we investigate kinship, territorial overlap, and territorial conflict in a habituated wild population of group-living cooperatively breeding birds, the southern pied babbler Turdoides bicolor. We find that close kin neighbors are beneficial. Territories overlap more when neighboring groups are close kin, and these larger overlaps with kin confer larger territories (an effect not seen for overlaps with unrelated groups). Overall, territorial conflict is costly, causing significant decreases in body mass, but conflicts with kin are shorter than those conducted with nonkin. Conflicts with more familiar unrelated neighbors are also shorter, indicating these neighbors are "dear enemies." However, kinship modulates the "dear enemy" effect; even when kin are encountered less frequently, kin elicit less-aggressive responses, similar to the "dear enemy" effect. Kin selection appears to be a main influence on territorial behavior in this species. Groups derive kin-selected benefits from decreased conflicts and maintain larger territories when overlapping with kin, though not when overlapping with nonkin. More generally, it is possible that kinship extends the "dear enemy" effect in animal societies.

8.
Foods ; 10(11)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34829015

ABSTRACT

Thirty conventional and twenty-four organic dairy farms were divided into equal numbers within system groups: high-pasture, standard-pasture, and low-pasture groups. Milk samples were collected monthly for 12 consecutive months. Milk from high-pasture organic farms contained less fat and protein than standard- and low-pasture organic farms, but more lactose than low-pasture organic farms. Grazing, concentrate feed intake and the contribution of non-Holstein breeds were the key drivers for these changes. Milk Ca and P concentrations were lower in standard-pasture conventional farms than the other conventional groups. Milk from low-pasture organic farms contained less Ca than high- and standard-pasture organic farms, while high-pasture organic farms produced milk with the highest Sn concentration. Differences in mineral concentrations were driven by the contribution of non-Holstein breeds, feeding practices, and grazing activity; but due to their relatively low numerical differences between groups, the subsequent impact on consumers' dietary mineral intakes would be minor.

9.
J Nutr ; 151(7): 1755-1768, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33758921

ABSTRACT

BACKGROUND: Chronic consumption of dairy products with an SFA-reduced, MUFA-enriched content was shown to impact favorably on brachial artery flow-mediated dilatation (FMD). However, their acute effect on postprandial cardiometabolic risk biomarkers requires investigation. OBJECTIVE: The effects of sequential high-fat mixed meals rich in fatty acid (FA)-modified or conventional (control) dairy products on postprandial FMD (primary outcome) and systemic cardiometabolic biomarkers in adults with moderate cardiovascular risk (≥50% above the population mean) were compared. METHODS: In a randomized crossover trial, 52 participants [mean ± SEM age: 53 ± 2 y; BMI (kg/m2) 25.9 ± 0.5] consumed a high-dairy-fat breakfast (0 min; ∼50 g total fat: modified: 25 g SFAs, 20 g MUFAs; control: 32 g SFAs, 12 g MUFAs) and lunch (330 min; ∼30 g total fat; modified: 15 g SFAs, 12 g MUFAs; control: 19 g SFAs, 7 g MUFAs). Blood samples were obtained before and until 480 min after breakfast, with FMD assessed at 0, 180, 300, and 420 min. Data were analyzed by linear mixed models. RESULTS: Postprandial changes in cardiometabolic biomarkers were comparable between the different dairy meals, with the exception of a tendency for a 4% higher AUC for the %FMD response following the modified-dairy-fat meals (P = 0.075). Plasma total lipid FA analysis revealed that incremental AUC responses were 53% lower for total SFAs, 214% and 258% higher for total cis-MUFAs (predominantly cis-9 18:1), and trans-18:1, respectively, following the modified relative to the control dairy meals (all P < 0.0001). CONCLUSIONS: In adults at moderate cardiovascular risk, acute consumption of sequential high-fat meals containing FA-modified dairy products had little impact on postprandial endothelial function or systemic cardiometabolic biomarkers, but a differential effect on the plasma total lipid FA profile, relative to conventional dairy fat meals.This trial was registered at clinicaltrials.gov as NCT02089035.


Subject(s)
Cardiovascular Diseases , Fatty Acids , Adult , Brachial Artery , Cholesterol , Cross-Over Studies , Dietary Fats , Fatty Acids, Unsaturated , Humans , Middle Aged , Postprandial Period , Triglycerides
10.
Sci Rep ; 10(1): 17557, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33067502

ABSTRACT

The digestive health of cows is one of the primary factors that determine their well-being and productivity. Under- and over-feeding are both commonplace in the beef and dairy industry; leading to welfare issues, negative environmental impacts, and economic losses. Unfortunately, digestive health is difficult for farmers to routinely monitor in large farms due to many factors including the need to transport faecal samples to a laboratory for compositional analysis. This paper describes a novel means for monitoring digestive health via a low-cost and easy to use imaging device based on computer vision. The method involves the rapid capture of multiple visible and near-infrared images of faecal samples. A novel three-dimensional analysis algorithm is then applied to objectively score the condition of the sample based on its geometrical features. While there is no universal ground truth for comparison of results, the order of scores matched a qualitative human prediction very closely. The algorithm is also able to detect the presence of undigested fibres and corn kernels using a deep learning approach. Detection rates for corn and fibre in image regions were of the order 90%. These results indicate the potential to develop this system for on-farm, real time monitoring of the digestive health of individual animals, allowing early intervention to effectively adjust feeding strategy.


Subject(s)
Animal Husbandry/instrumentation , Animal Husbandry/methods , Feces , Algorithms , Animal Feed/analysis , Animal Welfare , Animals , Behavior, Animal , Calibration , Cattle , Dairying , Deep Learning , Farms , Image Processing, Computer-Assisted/methods , Livestock , Software , Spectroscopy, Near-Infrared
11.
Am J Clin Nutr ; 111(4): 739-748, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32020168

ABSTRACT

BACKGROUND: Modifying dairy fat composition by increasing the MUFA content is a potential strategy to reduce dietary SFA intake for cardiovascular disease (CVD) prevention in the population. OBJECTIVES: To determine the effects of consuming SFA-reduced, MUFA-enriched (modified) dairy products, compared with conventional dairy products (control), on the fasting cholesterol profile (primary outcome), endothelial function assessed by flow-mediated dilatation (FMD; key secondary outcome), and other cardiometabolic risk markers. METHODS: A double-blind, randomized, controlled crossover 12-wk intervention was conducted. Participants with a 1.5-fold higher (moderate) CVD risk than the population mean replaced habitual dairy products with study products (milk, cheese, and butter) to achieve a high-fat, high-dairy isoenergetic daily dietary exchange [38% of total energy intake (%TE) from fat: control (dietary target: 19%TE SFA; 11%TE MUFA) and modified (16%TE SFA; 14%TE MUFA) diet]. RESULTS: Fifty-four participants (57.4% men; mean ± SEM age: 52 ± 3 y; BMI: 25.8 ± 0.5 kg/m2) completed the study. The modified diet attenuated the rise in fasting LDL cholesterol observed with the control diet (0.03 ± 0.06 mmol/L and 0.19 ± 0.05 mmol/L, respectively; P = 0.03). Relative to baseline, the %FMD response increased after the modified diet (0.35% ± 0.15%), whereas a decrease was observed after the control diet (-0.51% ± 0.15%; P< 0.0001). In addition, fasting plasma nitrite concentrations increased after the modified diet, yet decreased after the control diet (0.02 ± 0.01 µmol/L and -0.03 ± 0.02 µmol/L, respectively; P = 0.01). CONCLUSIONS: In adults at moderate CVD risk, consumption of a high-fat diet containing SFA-reduced, MUFA-enriched dairy products for 12 wk showed beneficial effects on fasting LDL cholesterol and endothelial function compared with conventional dairy products. Our findings indicate that fatty acid modification of dairy products may have potential as a public health strategy aimed at CVD risk reduction. This trial was registered at clinicaltrials.gov as NCT02089035.


Subject(s)
Cardiovascular Diseases/prevention & control , Cholesterol, LDL/metabolism , Fats, Unsaturated/metabolism , Fatty Acids, Unsaturated/metabolism , Cardiovascular Diseases/diet therapy , Cardiovascular Diseases/metabolism , Dietary Fats/metabolism , Dilatation , Double-Blind Method , Female , Humans , Male , Middle Aged
12.
Front Microbiol ; 11: 590441, 2020.
Article in English | MEDLINE | ID: mdl-33552010

ABSTRACT

Milk products are an important component of human diets, with beneficial effects for human health, but also one of the major sources of nutritionally undesirable saturated fatty acids (SFA). Recent discoveries showing the importance of the rumen microbiome on dairy cattle health, metabolism and performance highlight that milk composition, and potentially milk SFA content, may also be associated with microorganisms, their genes and their activities. Understanding these mechanisms can be used for the development of cost-effective strategies for the production of milk with less SFA. This work aimed to compare the rumen microbiome between cows producing milk with contrasting FA profile and identify potentially responsible metabolic-related microbial mechanisms. Forty eight Holstein dairy cows were fed the same total mixed ration under the same housing conditions. Milk and rumen fluid samples were collected from all cows for the analysis of fatty acid profiles (by gas chromatography), the abundances of rumen microbiome communities and genes (by whole-genome-shotgun metagenomics), and rumen metabolome (using 500 MHz nuclear magnetic resonance). The following groups: (i) 24 High-SFA (66.9-74.4% total FA) vs. 24 Low-SFA (60.2-66.6%% total FA) cows, and (ii) 8 extreme High-SFA (69.9-74.4% total FA) vs. 8 extreme Low-SFA (60.2-64.0% total FA) were compared. Rumen of cows producing milk with more SFA were characterized by higher abundances of the lactic acid bacteria Lactobacillus, Leuconostoc, and Weissella, the acetogenic Proteobacteria Acetobacter and Kozakia, Mycobacterium, two fungi (Cutaneotrichosporon and Cyphellophora), and at a lesser extent Methanobrevibacter and the protist Nannochloropsis. Cows carrying genes correlated with milk FA also had higher concentrations of butyrate, propionate and tyrosine and lower concentrations of xanthine and hypoxanthine in the rumen. Abundances of rumen microbial genes were able to explain between 76 and 94% on the variation of the most abundant milk FA. Metagenomics and metabolomics analyses highlighted that cows producing milk with contrasting FA profile under the same diet, also differ in their rumen metabolic activities in relation to adaptation to reduced rumen pH, carbohydrate fermentation, and protein synthesis and metabolism.

13.
J Dairy Sci ; 100(10): 7953-7966, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28803023

ABSTRACT

Agriculture-based reformulation initiatives, including oleic acid-rich lipid supplementation of the dairy cow diet, provide a novel means for reducing intake of saturated fatty acids (SFA) at a population level. In a blinded manner, this study evaluated the consumer acceptance of SFA-reduced, monounsaturated fatty acid-enriched (modified) milk, Cheddar cheese, and butter when compared with control and commercially available comparative samples. The effect of providing nutritional information about the modified cheese was also evaluated. Consumers (n = 115) rated samples for overall liking (appearance, flavor, and texture) using 9-point hedonic scales. Although no significant differences were found between the milk samples, the modified cheese was liked significantly less than a regular-fat commercial alternative for overall liking and liking of specific modalities and had a lower liking of texture score compared with the control cheese. The provision of health information significantly increased the overall liking of the modified cheese compared with tasting the same sample in a blinded manner. Significant differences were evident between the butter samples for overall liking and modalities of liking; all of the samples were significantly more liked than the commercial butter and sunflower oil spread. In conclusion, this study illustrated that consumer acceptance of SFA-reduced, monounsaturated fatty acid-enriched dairy products was dependent on product type. Future research should consider how optimization of the textural properties of fatty acid-modified (and fat-reduced) cheese might enhance consumer acceptance of this product.


Subject(s)
Butter , Cheese , Consumer Behavior , Dietary Fats/administration & dosage , Fatty Acids, Monounsaturated/administration & dosage , Fatty Acids , Milk/chemistry , Animals , Cattle , Female , Oleic Acid/administration & dosage
14.
Nutr J ; 16(1): 33, 2017 May 23.
Article in English | MEDLINE | ID: mdl-28535777

ABSTRACT

BACKGROUND: Dairy products are a major contributor to dietary SFA. Partial replacement of milk SFA with unsaturated fatty acids (FAs) is possible through oleic-acid rich supplementation of the dairy cow diet. To assess adherence to the intervention of SFA-reduced, MUFA-enriched dairy product consumption in the RESET (REplacement of SaturatEd fat in dairy on Total cholesterol) study using 4-d weighed dietary records, in addition to plasma phospholipid FA (PL-FA) status. METHODS: In a randomised, controlled, crossover design, free-living UK participants identified as moderate risk for CVD (n = 54) were required to replace habitually consumed dairy foods (milk, cheese and butter), with study products with a FA profile typical of retail products (control) or SFA-reduced, MUFA-enriched profile (modified), for two 12-week periods, separated by an 8-week washout period. A flexible food-exchange model was used to implement each isoenergetic high-fat, high-dairy diet (38% of total energy intake (%TE) total fat): control (dietary target: 19%TE SFA; 11%TE MUFA) and modified (16%TE SFA; 14%TE MUFA). RESULTS: Following the modified diet, there was a smaller increase in SFA (17.2%TE vs. 19.1%TE; p < 0.001) and greater increase in MUFA intake (15.4%TE vs. 11.8%TE; p < 0.0001) when compared with the control. PL-FA analysis revealed lower total SFAs (p = 0.006), higher total cis-MUFAs and trans-MUFAs (both p < 0.0001) following the modified diet. CONCLUSION: The food-exchange model was successfully used to achieve RESET dietary targets by partial replacement of SFAs with MUFAs in dairy products, a finding reflected in the PL-FA profile and indicative of objective dietary compliance. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02089035 , date 05-01-2014.


Subject(s)
Cardiovascular Diseases/blood , Cardiovascular Diseases/prevention & control , Diet , Fatty Acids/blood , Patient Compliance , Phospholipids/blood , Adult , Aged , Cross-Over Studies , Dairy Products/analysis , Dietary Fats/administration & dosage , Double-Blind Method , Fatty Acids/administration & dosage , Fatty Acids, Monounsaturated/administration & dosage , Fatty Acids, Monounsaturated/blood , Fatty Acids, Unsaturated/administration & dosage , Fatty Acids, Unsaturated/blood , Female , Humans , Male , Middle Aged , Nutrition Assessment , Risk Factors , Treatment Outcome , Young Adult
15.
Br J Nutr ; 116(5): 763-73, 2016 09.
Article in English | MEDLINE | ID: mdl-27452637

ABSTRACT

Enteric methane (CH4) production is a side-effect of herbivore digestion, but it is unknown whether CH4 itself influences digestive physiology. We investigated the effect of adding CH4 to, or reducing it in, the reticulorumen (RR) in a 4×4 Latin square experiment with rumen-fistulated, non-lactating cows, with four treatments: (i) control, (ii) insufflation of CH4 (iCH4), (iii) N via rumen fistula, (iv) reduction of CH4 via administration of bromochloromethane (BCM). DM intake (DMI), apparent total tract digestibility, digesta mean retention times (MRT), rumen motility and chewing activity, spot breath CH4 emission (CH4exhal, litre/kg DMI) as well as CH4 dissolved in rumen fluid (CH4RRf, µg/ml) were measured. Data were analysed using mixed models, including treatment (or, alternatively, CH4exhal or CH4RRf) and DMI relative to body mass0·85 (rDMI) as covariates. rDMI was the lowest on the BCM treatment. CH4exhal was highest for iCH4 and lowest for BCM treatments, whereas only BCM affected (reduced) CH4RRf. After adjusting for rDMI, CH4RRf had a negative association with MRT in the gastrointestinal tract but not in the RR, and negative associations with fibre digestibility and measures of rumination activity. Adjusting for rDMI, CH4exhal had additionally a negative association with particle MRT in the RR and a positive association with rumen motility. Thus, higher rumen levels of CH4 (CH4exhal or CH4RRf) were associated with shorter MRT and increased motility. These findings are tentatively interpreted as a feedback mechanism in the ruminant digestive tract that aims at mitigating CH4 losses by shortening MRT at higher CH4.


Subject(s)
Cattle/physiology , Gastrointestinal Motility/physiology , Methane/metabolism , Rumen/physiology , Animals , Feces , Female , Gastrointestinal Contents , Hydrogen-Ion Concentration , Mastication
16.
PLoS One ; 10(7): e0130795, 2015.
Article in English | MEDLINE | ID: mdl-26177094

ABSTRACT

For territorial group-living species, opportunities to reproduce on the natal territory can be limited by a number of factors including the availability of resources within a territory, access to unrelated individuals, and monopolies on reproduction by dominant group members. Individuals looking to reproduce are therefore faced with the options of either waiting for a breeding opportunity to arise in the natal territory, or searching for reproductive opportunities in non-natal groups. In the cooperatively breeding Southern pied babbler, Turdoides bicolor, most individuals who achieve reproductive success do so through taking up dominant breeding positions within non-natal groups. For subordinate pied babblers therefore, searching for breeding opportunities in non-natal groups is of primary importance as this represents the major route to reproductive success. However, prospecting (where individuals leave the group to search for reproductive opportunities within other groups) is costly and individuals rapidly lose weight when not part of a group. Here we demonstrate that subordinate pied babblers adopt an alternative strategy for mate attraction by vocal advertisement from within their natal territories. We show that subordinates focus their calling efforts on the edges of their territory, and specifically near boundaries with neighbouring groups that have potential breeding partners (unrelated individuals of the opposite sex). In contrast to prospecting, calling individuals showed no body mass loss associated with this behaviour, suggesting that calling from within the group may provide a 'cheap' advertisement strategy. Additionally, we show that subordinates use information regarding the composition of neighbouring groups to target the greatest number of potential mating partners.


Subject(s)
Passeriformes/physiology , Vocalization, Animal , Animals , Body Weight , Breeding , Female , Male , Movement , Passeriformes/growth & development , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...